1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
//! Use [`ditto.presence()`] to gain insight to connected Peers in the Ditto **mesh** via the
//! [`Presence`] API.
//!
//! The [`Presence`] API can be used to inspect the ways in which peers are connected to one
//! another in the Ditto mesh. Using [`.graph()`] or [`.observe()`], you can see an immediate
//! view of peer connections or receive callbacks with peer connection updates, respectively.
//!
//! The key piece of data in the presence API is the [`PresenceGraph`], which contains a
//! description of the "local peer" as well as a list of "remote peers". Remote peers are any
//! peers which can be reached by this local peer in the Ditto mesh, either directly via a
//! transport on this device, or indirectly via multiple hops through other peers.
//!
//! # Example
//!
//! Let's take a look at how to request a [`PresenceGraph`] and how to read through it:
//!
//! ```
//! use dittolive_ditto::prelude::*;
//! # fn example(ditto: &Ditto) -> anyhow::Result<()> {
//!
//! // Get an immediate `PresenceGraph` showing current connections
//! let graph = ditto.presence().graph();
//! let my_key = &graph.local_peer.peer_key_string;
//! let my_connections = &graph.local_peer.connections;
//!
//! // Let's find all peers that are directly connected to me, the local peer
//! let direct_peers = my_connections
//! .iter()
//! .map(|connection| {
//! // Choose the peer in this connection that is not me
//! if connection.peer_key_string1 == *my_key {
//! &connection.peer_key_string2
//! } else {
//! &connection.peer_key_string1
//! }
//! })
//! .collect::<Vec<_>>();
//! println!("My direct peers are {direct_peers:?}");
//!
//! // Let's look up some details about _all_ the remote peers we can see
//! let remote_peers_summary = graph
//! .remote_peers
//! .iter()
//! .map(|peer| {
//! // Peer Key => (Name, OS, Connection Count)
//! (
//! &peer.peer_key_string,
//! (&peer.device_name, &peer.os, peer.connections.len()),
//! )
//! })
//! .collect::<std::collections::BTreeMap<_, _>>();
//! println!("A summary of my remote peers looks like this: {remote_peers_summary:#?}");
//! # Ok(())
//! # }
//! ```
//!
//! Please note that obtaining a [`PresenceGraph`] via [`.graph()`] only shows a
//! _snapshot_ of what devices were present when the call was made. In order to watch
//! changes to device presence, we'll need to use [`.observe()`] to register a
//! callback and receive updates.
//!
//! # Example
//!
//! Let's look at how we can use the [`.observe()`] API to register a callback and
//! receive updates whenever the presence of our Ditto mesh changes. We could say the
//! presence has changed if any peers have added or removed connections in the mesh.
//!
//! ```
//! # use std::sync::{Arc, Mutex};
//! use dittolive_ditto::prelude::*;
//! # fn example(ditto: &Ditto) -> anyhow::Result<()> {
//!
//! let mut maybe_prev_graph = Arc::new(Mutex::new(None));
//! let _presence_observer = ditto.presence().observe(move |graph| {
//! let mut maybe_prev_graph = maybe_prev_graph.lock().unwrap();
//!
//! let Some(prev_graph) = &*maybe_prev_graph else {
//! // First presence update! Print what remote peers we see by their keys
//! let remote_peers = graph
//! .remote_peers
//! .iter()
//! .map(|peer| &peer.peer_key_string)
//! .collect::<Vec<_>>();
//! println!("Received first presence update! Remote peers: {remote_peers:?}");
//! *maybe_prev_graph = Some(graph.clone());
//! return;
//! };
//!
//! // Subsequent presence updates can compare the new graph against the old
//! let prev_remote_peers = prev_graph
//! .remote_peers
//! .iter()
//! .map(|peer| &peer.peer_key_string)
//! .collect::<std::collections::HashSet<_>>();
//! let latest_remote_peers = graph
//! .remote_peers
//! .iter()
//! .map(|peer| &peer.peer_key_string)
//! .collect::<std::collections::HashSet<_>>();
//!
//! // Detect if new peers have joined the mesh
//! let new_peers = latest_remote_peers
//! .difference(&prev_remote_peers)
//! .collect::<Vec<_>>();
//! if !new_peers.is_empty() {
//! println!("New peers joined the mesh! {new_peers:?}");
//! }
//!
//! // Detect if any peers left the mesh
//! let lost_peers = prev_remote_peers
//! .difference(&latest_remote_peers)
//! .collect::<Vec<_>>();
//! if !lost_peers.is_empty() {
//! println!("Peers have left the mesh! {lost_peers:?}");
//! }
//!
//! *maybe_prev_graph = Some(graph.clone());
//! });
//! # Ok(())
//! # }
//! ```
//!
//! [`ditto.presence()`]: crate::ditto::Ditto::presence
//! [`.graph()`]: Presence::graph
//! [`.observe()`]: Presence::observe
#![doc(alias = "mesh")]
#![warn(missing_docs)]
use_prelude!();
use std::{
future::Future,
sync::{Mutex, OnceLock, Weak},
};
use self::observer::{PeersObserverCtx, PresenceObserverCtx, WeakPresenceObserver};
use crate::transport::v2::V2Presence;
mod connection_request_handler;
pub(crate) mod observer;
// These items all "publicly" exist here in `presence`, even if defined elsewhere
pub use self::{
connection_request_handler::{ConnectionRequest, ConnectionRequestAuthorization},
observer::PresenceObserver,
};
pub use crate::transport::v3::{Connection, Peer, PresenceGraph, PresenceOs};
/// Convenience type for JSON objects seen in [`peer_metadata`][0].
///
/// [0]: Presence::peer_metadata
pub type JsonObject = ::serde_json::Map<String, ::serde_json::Value>;
/// The entrypoint to the Presence API, obtained with [`ditto.presence()`].
///
/// [See the `presence` module for guide-level docs and examples][0]
///
/// [`ditto.presence()`]: crate::prelude::Ditto::presence
/// [0]: crate::presence
pub struct Presence {
ditto: Arc<ffi_sdk::BoxedDitto>,
observers_v2: Mutex<Vec<Weak<PeersObserverCtx>>>,
observers_v3: Mutex<Vec<WeakPresenceObserver>>,
registered: Mutex<bool>,
peer_metadata_cache: Mutex<PeerMetadataCache>,
}
#[derive(Debug, Default)]
pub(crate) struct PeerMetadataCache {
json_str: String,
value: Arc<JsonObject>,
}
// Primary public API
impl Presence {
/// Return an immediate view of peer connections as a [`PresenceGraph`].
///
/// # Example
///
/// Let's take a look at how to request a [`PresenceGraph`] and how to read through it:
///
/// ```
/// use dittolive_ditto::prelude::*;
/// # fn example(ditto: &Ditto) -> anyhow::Result<()> {
///
/// // Get an immediate `PresenceGraph` showing current connections
/// let graph = ditto.presence().graph();
/// let my_key = &graph.local_peer.peer_key_string;
/// let my_connections = &graph.local_peer.connections;
///
/// // Let's find all peers that are directly connected to me, the local peer
/// let direct_peers = my_connections
/// .iter()
/// .map(|connection| {
/// // Choose the peer in this connection that is not me
/// if connection.peer_key_string1 == *my_key {
/// &connection.peer_key_string2
/// } else {
/// &connection.peer_key_string1
/// }
/// })
/// .collect::<Vec<_>>();
/// println!("My direct peers are {direct_peers:?}");
///
/// // Let's look up some details about _all_ the remote peers we can see
/// let remote_peers_summary = graph
/// .remote_peers
/// .iter()
/// .map(|peer| {
/// // Peer Key => (Name, OS, Connection Count)
/// (
/// &peer.peer_key_string,
/// (&peer.device_name, &peer.os, peer.connections.len()),
/// )
/// })
/// .collect::<std::collections::BTreeMap<_, _>>();
/// println!("A summary of my remote peers looks like this: {remote_peers_summary:#?}");
/// # Ok(())
/// # }
/// ```
///
/// Please note that obtaining a [`PresenceGraph`] via `.graph()` only shows a
/// _snapshot_ of what devices were present when the call was made. In order to watch
/// changes to device presence, we'll need to use [`.observe(...)`] to register a
/// callback and receive updates.
///
/// [`.observe(...)`]: Self::observe
pub fn graph(&self) -> PresenceGraph {
let raw_string = ffi_sdk::ditto_presence_v3(&self.ditto);
let json_str = raw_string.to_str();
::serde_json::from_str(json_str).unwrap()
}
/// Receive [`PresenceGraph`] updates when peer connections change in the Ditto mesh.
///
/// The returned [`PresenceObserver`] must be kept in scope to continue reciving updates.
///
/// # Example
///
/// Let's look at how we can use `.observe()` to register a callback and
/// receive updates whenever the presence of our Ditto mesh changes. We could say the
/// presence has changed if any peers have added or removed connections in the mesh.
///
/// ```
/// # use std::sync::{Arc, Mutex};
/// use dittolive_ditto::prelude::*;
/// # fn example(ditto: &Ditto) -> anyhow::Result<()> {
///
/// let mut maybe_prev_graph = Arc::new(Mutex::new(None));
/// let _presence_observer = ditto.presence().observe(move |graph| {
/// let mut maybe_prev_graph = maybe_prev_graph.lock().unwrap();
///
/// let Some(prev_graph) = &*maybe_prev_graph else {
/// // First presence update! Print what remote peers we see by their keys
/// let remote_peers = graph
/// .remote_peers
/// .iter()
/// .map(|peer| &peer.peer_key_string)
/// .collect::<Vec<_>>();
/// println!("Received first presence update! Remote peers: {remote_peers:?}");
/// *maybe_prev_graph = Some(graph.clone());
/// return;
/// };
///
/// // Subsequent presence updates can compare the new graph against the old
/// let prev_remote_peers = prev_graph
/// .remote_peers
/// .iter()
/// .map(|peer| &peer.peer_key_string)
/// .collect::<std::collections::HashSet<_>>();
/// let latest_remote_peers = graph
/// .remote_peers
/// .iter()
/// .map(|peer| &peer.peer_key_string)
/// .collect::<std::collections::HashSet<_>>();
///
/// // Detect if new peers have joined the mesh
/// let new_peers = latest_remote_peers
/// .difference(&prev_remote_peers)
/// .collect::<Vec<_>>();
/// if !new_peers.is_empty() {
/// println!("New peers joined the mesh! {new_peers:?}");
/// }
///
/// // Detect if any peers left the mesh
/// let lost_peers = prev_remote_peers
/// .difference(&latest_remote_peers)
/// .collect::<Vec<_>>();
/// if !lost_peers.is_empty() {
/// println!("Peers have left the mesh! {lost_peers:?}");
/// }
///
/// *maybe_prev_graph = Some(graph.clone());
/// });
/// # Ok(())
/// # }
/// ```
///
/// If instead you just need to check once to learn about which peers are connected
/// _right now_, try using the [`.graph()`] method instead.
///
/// [`.graph()`]: Self::graph
pub fn observe(
self: &Arc<Self>,
callback: impl Fn(&PresenceGraph) + Send + Sync + 'static,
) -> PresenceObserver {
if !*self.registered.lock().unwrap() {
self.subscribe();
}
let context = PresenceObserverCtx::new(Box::new(callback));
let arc_context = Arc::new(context);
let weak_context = Arc::downgrade(&arc_context);
{
// New scope to minimize the time we hold the lock.
let mut observers = self.observers_v3.lock().unwrap();
observers.push(weak_context);
}
::std::thread::spawn({
let this = self.retain();
move || {
// Initial event.
let str_box = ffi_sdk::ditto_presence_v3(&this.ditto);
this.on_presence_v3(str_box.to_str())
}
});
PresenceObserver::new(arc_context)
}
}
// Peer Metadata & on-connecting API.
impl Presence {
/// Set a dictionary of arbitrary data about this device to be shared with peers in the mesh.
///
/// This data is gossiped in the presence collection across the mesh. This can be useful to
/// include extra metadata like app versions,capabilities, etc., to help peers decide who to
/// interact with.
///
/// This peer information is persisted in the SDK, and thus needn't be set at every start
/// of Ditto.
///
/// # Security (and caveats)
/// This peer info will be signed by your peer key to prevent forgery of this info by other
/// peers.
///
/// However, for compatibility, there is no attestation of the *lack* of peer info -- that
/// is, participants in the mesh could maliciously remove peer info. If this is a concern
/// for your application, a workaround for this is to have your application require that
/// peers have a signed peer info dictionary present.
///
/// Similarly, as there is no monotonic version counter or timestamp/expiration of the
/// signed peer info, replay attacks (replacing the current info with previously, possibly
/// outdated, signed info) are possible without counter-measures. If this is a concern
/// for your application, you might consider including a counter or creation timestamp
/// to prevent replays, depending on your use-case.
///
/// # Performance caveats
/// Because this information is included in the presence data that is gossiped among peers,
/// the size of this peer info and the frequency it is updated can *drastically* affect
/// performance if it is too large.
///
/// # Errors
/// Because of the performance implications, the serialized info dictionary is currently
/// limited to 4KiB.
///
/// # Examples
/// ```
/// # use std::collections::HashMap;
/// use dittolive_ditto::prelude::*;
/// use serde_json::json;
/// # |ditto: Ditto| -> Result<(), Box<dyn std::error::Error>> {
/// ditto.presence().set_peer_metadata(&json!({
/// "app_version": "1.0.0",
/// }))?;
/// # Ok(())
/// # };
/// ```
pub fn set_peer_metadata(&self, peer_metadata: &impl Serialize) -> Result<(), DittoError> {
let payload = ::serde_json::to_string(peer_metadata)?;
self.set_peer_metadata_json_str(&payload)
}
/// Set arbitrary metadata formatted as JSON to be associated with the
/// current peer.
///
/// The metadata must not exceed 4 KB in size. Expects JSON.
///
/// - See also: [`Self::set_peer_metadata()`] for details on usage of metadata.
pub fn set_peer_metadata_json_str(&self, json: &str) -> Result<(), DittoError> {
ffi_sdk::dittoffi_presence_try_set_peer_metadata_json(&self.ditto, json.as_bytes().into())
.into_rust_result()?;
Ok(())
}
/// Metadata associated with the current peer as JSON-encoded data.
///
/// Other peers in the same mesh can access this user-provided dictionary of
/// metadata via the presence graph at [`Self::graph()`] and when
/// evaluating connection requests using
/// [`Self::set_connection_request_handler()`]. Use [`Self::set_peer_metadata()`]
/// or [`Self::set_peer_metadata_json_str()`] to set this value.
pub fn peer_metadata_json_str(&self) -> String {
String::from_utf8(From::<Box<[u8]>>::from(
ffi_sdk::dittoffi_presence_peer_metadata_json(&self.ditto).into(),
))
.expect("UTF-8")
}
/// [`DeserializeOwned`] convenience around [`Self::peer_metadata_json_str()`].
pub fn peer_metadata_serde<T: DeserializeOwned>(&self) -> Result<T> {
let value = ::serde_json::from_str(&self.peer_metadata_json_str())?;
Ok(value)
}
/// Metadata associated with the current peer.
///
/// Other peers in the same mesh can access this user-provided dictionary of
/// metadata via the presence graph at [`Self::graph()`] and when
/// evaluating connection requests using
/// [`Self::set_connection_request_handler()`]. Use [`Self::set_peer_metadata()`]
/// or [`Self::set_peer_metadata_json_str()`] to set this value.
///
/// This is a convenience property that wraps [`Self::peer_metadata_json_str()`].
pub fn peer_metadata(&self) -> Arc<JsonObject> {
let json_str = self.peer_metadata_json_str();
let mut cache = self
.peer_metadata_cache
.lock()
.unwrap_or_else(|it| it.into_inner());
if json_str != cache.json_str {
*cache = PeerMetadataCache {
value: Arc::new(
::serde_json::from_str(&json_str).expect("incorrect json from `dittoffi`"),
),
json_str,
};
}
cache.value.retain()
}
/// Set this handler to control which peers in a Ditto mesh can connect to
/// the current peer.
///
/// Each peer in a Ditto mesh will attempt to connect to other peers that it
/// can reach. By default, the mesh will try and establish connections that
/// optimize for the best overall connectivity between peers. However, you
/// can set this handler to assert some control over which peers you connect
/// to.
///
/// If set, this handler is called for every incoming connection request
/// from a remote peer and is passed the other peer's `peer_key`,
/// `peer_metadata`, and `identity_service_metadata`. The handler can then
/// accept or reject the request by returning an according
/// [`ConnectionRequestAuthorization`] value. When the connection
/// request is rejected, the remote peer may retry the connection request
/// after a short delay.
///
/// Connection request handlers must reliably respond to requests within a
/// short time: **if a handler takes too long to return, the connection
/// request will fall back to being denied**. The response –currently— times
/// out after 10 seconds, but this exact value may be subject to change in
/// future releases.
///
/// - Note: the handler is called from a different thread ("background hook").
/// - See also: [`Self::peer_metadata()`]
///
/// ## Example
///
/// ```
/// # use dittolive_ditto::prelude::*;
/// # |ditto: Ditto| -> Result<(), Box<dyn std::error::Error>> {
/// /// Let's imagine the app we are maintaining has a bug in `1.2.3`:
/// const BUGGY_VERSION: &str = "1.2.3";
///
/// // We avoid problems in updated versions of our app with these ones by
/// // rejecting connections to them, like so:
/// ditto
/// .presence()
/// .set_connection_request_handler(|connection_request: ConnectionRequest| {
/// match connection_request
/// .peer_metadata()
/// .get("app_version")
/// .and_then(|it| it.as_str())
/// {
/// // Reject peers reporting a known buggy version or reporting no
/// // version at all.
/// Some(BUGGY_VERSION) | None => return ConnectionRequestAuthorization::Deny,
/// Some(_non_buggy_version) => { /* no reason to reject here */ }
/// }
/// // Potentially other checks/reasons to reject…
///
/// // Eventually:
/// ConnectionRequestAuthorization::Allow
/// });
///
/// // You can also unset the `connection_request_handler` by setting it to `None`.
/// // This uses the default handler, which accepts all requests.
/// ditto.presence().set_connection_request_handler(None);
/// # Ok(())
/// # };
/// ```
pub fn set_connection_request_handler<
F: sealed::IntoOption<
impl 'static + Send + Sync + Fn(ConnectionRequest) -> ConnectionRequestAuthorization,
>,
>(
&self,
handler_or_none: F,
) {
let ffi_callback = F::into_option(handler_or_none).map(|callback| {
Arc::new(move |raw: repr_c::Box<ffi_sdk::FfiConnectionRequest>| {
let connection_request = ConnectionRequest::new(raw);
let raw = connection_request.raw();
callback(connection_request).into_ffi(&raw);
})
.into()
});
ffi_sdk::dittoffi_presence_set_connection_request_handler(&self.ditto, ffi_callback)
}
/// Convenience around [`Self::set_connection_request_handler()`] that allows the callback to be
/// `async`.
///
/// Not responding in time will lead to a handshake timeout, effectively rejecting the peer.
pub fn set_connection_request_handler_async<ConnectionRequestAuthorizationFut>(
&self,
async_callback: impl 'static
+ Send
+ Sync
+ Fn(ConnectionRequest) -> ConnectionRequestAuthorizationFut,
) where
ConnectionRequestAuthorizationFut:
'static + Send + Future<Output = ConnectionRequestAuthorization>,
{
use tokio::{runtime, sync::mpsc};
let new_mini_runtime = || {
// Using an unbounded channel to implement `task::spawn()`, like tokio does.
let (tx, mut rx) = mpsc::unbounded_channel();
let runtime = runtime::Builder::new_current_thread()
.enable_all()
.build()
.expect("failed to build `async` runtime");
::std::thread::spawn(move || {
runtime.block_on(async move {
while let Some(task) = rx.recv().await {
() = task.await;
}
})
});
tx
};
ffi_sdk::dittoffi_presence_set_connection_request_handler(
&self.ditto,
Some(
Arc::new(move |raw| {
static MINI_RUNTIME: OnceLock<
mpsc::UnboundedSender<Pin<Box<dyn Send + Future<Output = ()>>>>,
> = OnceLock::new();
let connection_request = ConnectionRequest::new(raw);
let raw = connection_request.raw();
let task_to_spawn_detached = {
let async_callback_connection_request = async_callback(connection_request);
async move {
async_callback_connection_request.await.into_ffi(&raw);
}
};
MINI_RUNTIME
.get_or_init(new_mini_runtime)
.send(Box::pin(task_to_spawn_detached))
.expect("dedicated async runtime to be alive");
})
.into(),
),
)
}
}
// Private methods
impl Presence {
pub(crate) fn new(ditto: Arc<ffi_sdk::BoxedDitto>) -> Self {
Self {
ditto,
observers_v2: <_>::default(),
observers_v3: <_>::default(),
registered: false.into(),
peer_metadata_cache: <_>::default(),
}
}
/// `ctx` is, conceptually-speaking a `&'short_lived Weak< DiskUsageObserverCtx<F> >`.
///
/// This scoped/callback API embodies that.
#[track_caller]
unsafe fn borrowing_from_ctx(ctx: *const c_void, yielding: impl FnOnce(&Weak<Presence>)) {
let weak_ctx = ::core::mem::ManuallyDrop::new(Weak::from_raw(ctx.cast::<Presence>()));
yielding(&weak_ctx)
}
unsafe extern "C" fn retain(ctx: *mut c_void) {
Self::borrowing_from_ctx(ctx, |weak_ctx| _ = Weak::into_raw(weak_ctx.clone()))
}
unsafe extern "C" fn release(ctx: *mut c_void) {
drop(Weak::<Presence>::from_raw(ctx.cast()))
}
/// C wrapper for calling the real callback on Presence
unsafe extern "C" fn on_event_v2(ctx: *mut c_void, json: char_p::Ref<'_>) {
Self::borrowing_from_ctx(ctx, |weak_ctx| {
if let Some(strong_ctx) = weak_ctx.upgrade() {
let presence_json_str = json.to_str();
strong_ctx.on_presence_v2(presence_json_str);
}
})
}
/// C wrapper for calling the real callback on Presence
unsafe extern "C" fn on_event_v3(ctx: *mut c_void, json: char_p::Ref<'_>) {
Self::borrowing_from_ctx(ctx, |weak_ctx| {
if let Some(strong_ctx) = weak_ctx.upgrade() {
let presence_json_str = json.to_str();
strong_ctx.on_presence_v3(presence_json_str);
}
})
}
fn on_presence_v2(&self, json_str: &str) {
// v2 presence
let mut observers_v2 = self.observers_v2.lock().unwrap();
if observers_v2.is_empty() {
return;
}
if let Ok(presence_v2) = serde_json::from_str::<V2Presence>(json_str) {
observers_v2.retain(|weak_observer| {
if let Some(observer) = weak_observer.upgrade() {
(observer.on_presence)(presence_v2.clone());
true
} else {
false
}
})
}
}
fn on_presence_v3(&self, json_str: &str) {
// v3 presence
let mut observers_v3 = self.observers_v3.lock().unwrap();
if observers_v3.is_empty() {
return;
}
if let Ok(presence_graph) = serde_json::from_str(json_str) {
observers_v3.retain(|weak_observer| {
if let Some(observer) = weak_observer.upgrade() {
(observer.on_presence)(&presence_graph);
true
} else {
false
}
})
}
}
fn subscribe(self: &Arc<Self>) {
unsafe {
let weak_self = Arc::downgrade(self);
ffi_sdk::ditto_register_presence_v2_callback(
&self.ditto,
weak_self.as_ptr() as *mut _,
Some(Presence::retain),
Some(Presence::release),
Some(<unsafe extern "C" fn(_, char_p::Ref<'_>)>::into(
Presence::on_event_v2,
)),
);
ffi_sdk::ditto_register_presence_callback_v3(
&self.ditto,
weak_self.as_ptr() as *mut _,
Some(Presence::retain),
Some(Presence::release),
Some(<unsafe extern "C" fn(_, char_p::Ref<'_>)>::into(
Presence::on_event_v3,
)),
);
// Guards against mistakes such as using `.into_raw()` rather than `.as_ptr()`.
drop(weak_self);
}
*self.registered.lock().unwrap() = true;
}
/// Add a peer observer and return a PresenceObserver to be able to drop it when desired.
#[allow(deprecated)]
pub(crate) fn add_observer(
self: &Arc<Self>,
handler: impl Fn(V2Presence) + Send + Sync + 'static,
) -> PeersObserver {
let context = PeersObserverCtx::new(Box::new(handler));
let arc_context = Arc::new(context);
let weak_context = Arc::downgrade(&arc_context);
if !*self.registered.lock().unwrap() {
self.subscribe();
}
{
// New scope to minimize the time we hold the lock.
let mut observers = self.observers_v2.lock().unwrap();
observers.push(weak_context);
}
::std::thread::spawn({
let this = self.retain();
move || {
// Initial event.
let str_box = ffi_sdk::ditto_presence_v2(&this.ditto);
this.on_presence_v2(str_box.to_str())
}
});
PeersObserver::new(arc_context)
}
#[doc(hidden)]
#[deprecated(note = "Use `.graph()` instead")]
pub fn exec(&self) -> PresenceGraph {
self.graph()
}
}
/// Defines a simplified connection type between peers for reporting presence
/// info.
///
/// These connections indicate P2P connections _only_. A connection to the Big Peer
/// is recorded by a simple boolean flag on the [`Peer`] type.
#[non_exhaustive]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
pub enum ConnectionType {
/// Connected to the remote peer via Bluetooth Low-Energy (BLE).
Bluetooth,
/// Connected to the remote peer via LAN, e.g. home or office WiFi.
AccessPoint,
/// Direct WiFi between peers, using AWDL (Apple) or WiFi Aware (Android).
P2PWiFi,
/// Connected to the remote peer via WebSocket, a bidirectional stream over http(s).
WebSocket,
/// Unknown connection type, remote peer is likely a higher version.
#[doc(hidden)]
Unknown,
}
impl ConnectionType {
pub(crate) fn from_ffi(ffi: ::ffi_sdk::ConnectionType) -> Self {
match ffi {
::ffi_sdk::ConnectionType::Bluetooth => Self::Bluetooth,
::ffi_sdk::ConnectionType::AccessPoint => Self::AccessPoint,
::ffi_sdk::ConnectionType::P2PWiFi => Self::P2PWiFi,
::ffi_sdk::ConnectionType::WebSocket => Self::WebSocket,
#[allow(unreachable_patterns)]
_ => {
tracing::debug!(connection_type = ?ffi, "got unknown `ConnectionType`");
Self::Unknown
}
}
}
}
mod sealed {
use super::*;
/// A trait implemented for both `None` and instances of
/// `'static + Send + Sync + Fn(ConnectionRequest) -> ConnectionRequestAuthorization`.
///
/// Used to keep perfect API parity with that of other SDKs.
pub trait IntoOption<
F: 'static + Send + Sync + Fn(ConnectionRequest) -> ConnectionRequestAuthorization,
>
{
fn into_option(_: Self) -> Option<F>;
}
impl IntoOption<fn(ConnectionRequest) -> ConnectionRequestAuthorization>
for Option<::never_say_never::Never>
{
fn into_option(_: Self) -> Option<fn(ConnectionRequest) -> ConnectionRequestAuthorization> {
None
}
}
impl<F> IntoOption<F> for F
where
F: 'static + Send + Sync + Fn(ConnectionRequest) -> ConnectionRequestAuthorization,
{
fn into_option(f: Self) -> Option<Self> {
Some(f)
}
}
}